OBSERVATIONS & RECOMMENDATIONS After reviewing data collected from **Martin Meadow Pond, Lancaster,** the program coordinators have made the following observations and recommendations. We congratulate your group on sampling twice this year! However, we encourage your group to conduct more sampling events in the future. Typically, we recommend that monitoring groups sample three times per summer (once in **June**, **July**, and **August**). We understand that the number of sampling events you decide to conduct per summer will depend upon volunteer availability, and your group's goals and funding availability. However, with a limited amount of data it is difficult to determine accurate and representative water quality trends. Since weather patterns and activity in the watershed can change throughout the summer, from year to year, and even from hour to hour during a rain event, it is a good idea to sample the pond at least once per month during the summer. If you are having difficulty finding volunteers to help sample or to travel to one of the laboratories, please call the VLAP Coordinator and DES will help you work out an arrangement. If your monitoring group's sampling events this year were limited due to not having enough time to pick-up or drop-off samples at the Limnology Center in Concord, please remember the Plymouth State University Center for the Environment Satellite Laboratory is open in Plymouth. This laboratory was established to serve the large number of lakes/ponds in the greater North region of the state. This laboratory is inspected by DES and operates under a DES approved quality assurance plan. We encourage your monitoring group to utilize this laboratory next summer for all sampling events, except for the annual DES biologist visit. To find out more about the Center for the Environment Satellite Laboratory, and/or to schedule dates to pick up bottles and equipment, please call Adam Baumann, laboratory manager, at (603) 535-3269. As part of a cooperative effort between NHDES and EPA Region 1, DES biologists performed a comprehensive lake assessment on **Martin Meadow Pond** in **July** during **2008**. The Probabilistic Lake Assessment (PLA) serves to assess New Hampshire's lake and determine the percentage of lakes that are in good, fair or poor condition. Lakes were randomly selected based on a statistical survey representing the population of lakes in their ecological region, but had to be at least one meter deep and over ten acres in size. Lakes were assessed using standard protocols, and the following parameters were measured: temperature, dissolved oxygen, nutrients, chlorophyll-a, lake clarity, turbidity, color, zooplankton and phytoplankton, bacteria, macroinvertbrates, habitat condition, and sediment cores. Some data from this assessment has been included in your annual report and added to the historical database for the lake or pond. The data will help to determine the regional and national condition of lakes. Those volunteer monitoring groups with historical data can compare the condition of their lakes on a statewide, regional or national level. Data from the PLA will be compiled, entered into New Hampshire's database, analyzed, and a report will be made available to the public. For more information contact Bob Estabrook at robert.estabrook@des.nh.gov. # FIGURE INTERPRETATION # CHLOROPHYLL-A Figure 1 and Table 1: Figure 1 in Appendix A shows the historical and current year chlorophyll-a concentration in the water column. Table 1 in Appendix B lists the maximum, minimum, and mean concentration for each sampling year that the pond has been monitored through VLAP. Chlorophyll-a, a pigment found in plants, is an indicator of the algal abundance. Algae (also known as phytoplankton) are typically microscopic, chlorophyll producing plants that are naturally occurring in lake ecosystems. The chlorophyll-a concentration measured in the water gives biologists an estimation of the algal concentration or lake productivity. The median summer chlorophyll-a concentration for New Hampshire's lakes and ponds is 4.58 mg/m³. The current year data (the top graph) show that the mean chlorophyll-a concentration was **3.70 mg/m³** in **July**. The historical data (the bottom graph) show that the **2008** chlorophyll-a mean is *slightly less than* the state and similar lake medians, and is the lowest concentration measured since monitoring began. For more information on the similar lake median, refer to Appendix F. Overall, visual inspection of the historical data trend line (the bottom graph) shows a *variable* in-lake chlorophyll-a trend since monitoring began. Specifically the mean chlorophyll concentration has # fluctuated between approximately 3.70 and 12.73 mg/m³ since 2005. Please keep in mind that this trend is based on limited data. As your group expands its sampling program to include additional events each year, we will be able to determine trends with more accuracy and confidence. After 10 consecutive years of sample collection, we will be able to conduct a statistical analysis of the historical data to objectively determine if there has been a significant change in the annual mean chlorophyll-a concentration since monitoring began. While algae are naturally present in all lakes and ponds, an excessive or increasing amount of any type is not welcomed. In freshwater lakes and ponds, phosphorus is the nutrient that algae typically depend upon for growth in New Hampshire lakes. Algal concentrations may increase as nonpoint sources of phosphorus from the watershed increase, or as in-lake phosphorus sources increase. Therefore, it is extremely important for volunteer monitors to continually educate all watershed residents about management practices that can be implemented to minimize phosphorus loading to surface waters. # **TRANSPARENCY** Figure 2 and Tables 3a and 3b: Figure 2 in Appendix A shows the historical and current year data for transparency with and without the use of a viewscope. Table 3a in Appendix B lists the maximum, minimum and mean transparency data without the use of a viewscope and Table 3b lists the maximum, minimum and mean transparency data with the use of a viewscope for each year that the pond has been monitored through VLAP. Volunteer monitors use the Secchi disk, a 20 cm disk with alternating black and white quadrants, to measure how far a person can see into the water. Transparency, a measure of water clarity, can be affected by the amount of algae and sediment in the water, as well as the natural lake color of the water. **The median summer transparency for New Hampshire's lakes and ponds is 3.2 meters.** The current year data (the top graph) show that the non-viewscope inlake transparency *remained stable* from **July** to **August**. The historical data (the bottom graph) show that the **2008** mean nonviewscope transparency is *slightly greater than* the state and similar lake medians, and is the highest (deepest) transparency measured since monitoring began. Please refer to Appendix F for more information about the similar lake median. The current year data (the top graph) show that the viewscope in-lake transparency *decreased slightly* from **July** to **August**. The transparency measured with the viewscope was generally *greater than* the transparency measured without the viewscope this summer. As discussed previously, a comparison of the transparency readings taken with and without the use of a viewscope shows that the viewscope typically increases the depth to which the Secchi disk can be seen into the lake, particularly on sunny and windy days. We recommend that your group measure Secchi disk transparency with and without the viewscope on each sampling event. It is important to note that viewscope transparency data are not compared to a New Hampshire median or similar lake median. This is because lake transparency with the use of a viewscope has not been historically measured by DES. At some point in the future, the New Hampshire and similar lake medians for viewscope transparency will be calculated and added to the appropriate graphs. Overall, visual inspection of the historical data trend line (the bottom graph) shows a *relatively stable* trend for in-lake non-viewscope transparency. Specifically, the transparency has *remained relatively stable ranging between approximately 2.3 and 3.4 meters* since monitoring began in 2005. Please keep in mind that this trend is based on limited data. As your group expands its sampling program to include additional events each year, we will be able to determine trends with more accuracy and confidence. Again, please keep in mind that this trend is based on only *four* years of data. As previously discussed, after 10 consecutive years of sample collection, we will be able to conduct a statistical analysis of the historical data to objectively determine if there has been a significant change in the annual mean transparency since monitoring began. Typically, high intensity rainfall causes sediment-laden stormwater runoff to flow into surface waters, thus increasing turbidity and decreasing clarity. Efforts to stabilize stream banks, lake and pond shorelines, disturbed soils within the watershed, and especially dirt roads located immediately adjacent to the edge of tributaries and the lake or pond should continue on an annual basis. Guides to best management practices that can be implemented to reduce, and possibly even eliminate, nonpoint source pollutants, are available from DES upon request. # **TOTAL PHOSPHORUS** Figure 3 and Table 8: The graphs in Figure 3 in Appendix A show the amount of epilimnetic (upper layer) phosphorus and hypolimnetic (lower layer) phosphorus; the inset graphs show current year data. Table 8 in Appendix B lists the annual maximum, minimum, and median concentration for each deep spot layer and each tributary since the pond has been sampled through VLAP. Phosphorus is typically the limiting nutrient for vascular aquatic plant and algae growth in New Hampshire's lakes and ponds. Excessive phosphorus in a lake or pond can lead to increased plant and algal growth over time. The median summer total phosphorus concentration in the epilimnion (upper layer) of New Hampshire's lakes and ponds is 12 ug/L. The median summer phosphorus concentration in the hypolimnion (lower layer) is 14 ug/L. The current year data for the epilimnion (the top inset graph) show that the phosphorus concentration *increased slightly* from **July** to **August**. The historical data show that the **2008** mean epilimnetic phosphorus concentration is *slightly less than* the state and similar lake medians. Refer to Appendix F for more information about the similar lake median. The current year data for the hypolimnion (the bottom inset graph) show that the phosphorus concentration *decreased* from **July** to **August**. The historical data show that the **2008** mean hypolimnetic phosphorus concentration is *less than* the state and similar lake medians, and is the lowest concentration measured since monitoring began. Please refer to Appendix F for more information about the similar lake median. Overall, visual inspection of the historical data trend line for the epilimnion shows a *relatively stable* phosphorus trend. Specifically, the mean annual epilimnetic phosphorus concentration has *remained approximately the same* since monitoring began in **2005**. Overall, visual inspection of the historical data trend line for the hypolimnion shows a *variable* phosphorus trend since monitoring began. Specifically the mean annual concentration has *fluctuated between approximately 10 and 24 ug/L* since monitoring began in 2005. Please keep in mind that these trends are based on limited data. As your group expands its sampling program to include additional events each year, we will be able to determine trends with more accuracy and confidence. As discussed previously, after 10 consecutive years of sample collection, we will be able to conduct a statistical analysis of the historical data to objectively determine if there has been a significant change in the annual mean phosphorus concentration since monitoring began. One of the most important approaches to reducing phosphorus loading to a waterbody is to continually educate watershed residents about the watershed sources of phosphorus and how excessive phosphorus loading can negatively impact the ecology and the recreational, economical, and ecological value of lakes and ponds. ### TABLE INTERPRETATION # > Table 2: Phytoplankton Table 2 in Appendix B lists the current and historical phytoplankton and/or cyanobacteria observed in the pond. Specifically, this table lists the three most dominant phytoplankton and/or cyanobacteria observed in the sample and their relative abundance in the sample. The dominant phytoplankton and/or cyanobacteria observed in the 7/2/2008 sample were *Asterionella* (Diatom), *Anabaena* (Cyanobacteria), and *Ceratium* (Dinoflagellate). Phytoplankton populations undergo a natural succession during the growing season. Please refer to the "Biological Monitoring Parameters" section of this report for a more detailed explanation regarding seasonal plankton succession. Diatoms and golden-brown algae populations are typical in New Hampshire's less productive lakes and ponds. # > Table 2: Cyanobacteria A moderate amount of the cyanobacterium *Anabaena* was observed in the **July** plankton sample. *These cyanobacteria*, *if present in large amounts*, *can be toxic to livestock*, *wildlife*, *pets*, *and humans*. Please refer to the "Biological Monitoring Parameters" section of this report for a more detailed explanation regarding cyanobacteria. Cyanobacteria can reach nuisance levels when phosphorus loading from the watershed to surface waters is increased and favorable environmental conditions occur, such as a period of sunny, warm weather. The presence of cyanobacteria serves as a reminder of the pond's delicate balance. Watershed residents should continue to act proactively to reduce nutrient loading to the pond by eliminating lawn fertilizer use, keeping the pond shoreline natural, re-vegetating cleared areas within the watershed, and properly maintaining septic systems and roads. In addition, residents should also observe the pond in September and October during the time of fall turnover (lake mixing) to document any algal blooms that may occur. Cyanobacteria have the ability to regulate their depth in the water column by producing or releasing gas from vesicles. However, occasionally lake mixing can affect their buoyancy and cause them to rise to the surface in high concentrations. Wind and currents tend to "pile" cyanobacteria into scums that accumulate in one section of the pond. If a fall bloom occurs, please collect a sample in any clean jar or bottle and contact the VLAP Coordinator. # > Table 4: pH Table 4 in Appendix B presents the in-lake and tributary current year and historical pH data. pH is measured on a logarithmic scale of 0 (acidic) to 14 (basic). pH is important to the survival and reproduction of fish and other aquatic life. A pH below 6.0 typically limits the growth and reproduction of fish. A pH between 6.0 and 7.0 is ideal for fish. The median pH value for the epilimnion (upper layer) in New Hampshire's lakes and ponds is **6.6**, which indicates that the state surface waters are slightly acidic. For a more detailed explanation regarding pH, please refer to the "Chemical Monitoring Parameters" section of this report. The mean pH at the deep spot this year ranged from **7.14** in the hypolimnion to **7.13** in the epilimnion, which means that the water is *approximately neutral*. # > Table 5: Acid Neutralizing Capacity Table 5 in Appendix B presents the current year and historical epilimnetic ANC for each year the pond has been monitored through VLAP. Buffering capacity (ANC) describes the ability of a solution to resist changes in pH by neutralizing the acidic input. The median ANC value for New Hampshire's lakes and ponds is **4.8 mg/L**, which indicates that many lakes and ponds in the state are at least "moderately vulnerable" to acidic inputs. For a more detailed explanation about ANC, please refer to the "Chemical Monitoring Parameters" section of this report. The mean acid neutralizing capacity (ANC) of the epilimnion (upper layer) was **15.2 mg/L**, which is **much greater than** the state median. In addition, this indicates that the pond has a **low vulnerability** to acidic inputs. # > Table 6: Conductivity Table 6 in Appendix B presents the current and historical conductivity values for tributaries and in-lake data. Conductivity is the numerical expression of the ability of water to carry an electric current, which is determined by the number of negatively charged ions from metals, salts, and minerals in the water column. The median conductivity value for New Hampshire's lakes and ponds is **38.4 uMhos/cm**. For a more detailed explanation, please refer to the "Chemical Monitoring Parameters" section of this report. The mean annual epilimnetic conductivity at the deep spot this year was **83.33 uMhos/cm**, which is *greater than* the state median. Overall, the **2008** conductivity results for the deep spot and tributaries were *slightly lower than* has been measured **since monitoring began**. It is likely that slow spring snowmelt allowed any chloride contributions to infiltrate into the groundwater and not directly into surface waters. Also, the record rainfall during the 2008 summer season possibly diluted the ion concentration in surface waters throughout the watershed. Specifically, the significant summer rainfalls likely increased the flushing rate for many lakes and ponds allowing potential watershed pollutants to flush through the system and not concentrate in the stratified surface waters. However, the conductivity continued to remain *greater than* the state median in the pond and tributaries. Typically, elevated conductivity indicates the influence of pollutant sources associated with human activities. These sources include failed or marginally functioning septic systems, agricultural runoff, and road runoff, which contain road salt during the spring snow-melt. New development in the watershed can alter runoff patterns and expose new soil and bedrock areas, which could also contribute to increasing conductivity. In addition, natural sources, such as iron and manganese deposits in bedrock, can influence conductivity. We recommend that your monitoring group conduct stream surveys and rain event sampling along the tributaries with *elevated* conductivity so that we can determine what may be causing the increases. For a detailed explanation on how to conduct rain event sampling and stream surveys, please refer to the 2002 VLAP Annual Report special topic article, which is posted on the VLAP website at http://www.des.nh.gov/organization/divisions/water/wmb/vlap/categories/publications.htm, or contact the VLAP Coordinator. We also recommend that your monitoring group conduct a shoreline conductivity survey of the lake and the tributaries with *elevated* conductivity to help identify the sources of conductivity. To learn how to conduct a shoreline or tributary conductivity survey, please refer to the 2004 special topic article, which is posted on the VLAP website at http://www.des.nh.gov/organization/divisions/water/wmb/vlap/categories/publications.htm or contact the VLAP Coordinator. It is possible that de-icing materials applied to nearby roadways during the winter months may be influencing the conductivity in the pond. The most commonly used de-icing material in New Hampshire is salt (sodium chloride). A limited amount of chloride sampling was conducted during **2008**. Please refer to the discussion of **Table 13** for more information. Therefore, we recommend that the **epilimnion** and the **tributaries** be sampled for chloride next year. This additional sampling may help us identify what areas of the watershed are contributing to the increasing in-lake conductivity. Please note that the DES Limnology Center in Concord is able to conduct chloride analyses, free of charge. As a reminder, it is best to conduct chloride sampling in the spring as the snow is melting and during rain events. # > Table 7a and Table 7b: Total Kjeldahl Nitrogen and Nitrite+Nitrate Nitrogen Table 7a in Appendix B presents the current year and historical Total Kjeldahl Nitrogen and Table 7b presents the current year and historical nitrite and nitrate nitrogen. Nitrogen is another nutrient that is essential for the growth of plants and algae. Nitrogen is typically the limiting nutrient in estuaries and coastal ecosystems. However, in freshwater, nitrogen is not typically the limiting nutrient. Therefore, nitrogen is not typically sampled through VLAP. However, if phosphorus concentrations in freshwater are elevated, then nitrogen loading may stimulate additional plant and algal growth. Please refer to the "Chemical Monitoring Parameters" section of this report for a more detailed explanation. During the most recent DES Lake Assessment Program survey, conducted during the Summer of **2008**, the ratio of the total nitrogen concentration to total phosphorus (TN:TP) concentration in the epilimnion sample was **28**, which is *greater than* **15**, indicating that the pond is **phosphorus-limited**. This means that any additional **phosphorus** loading to the pond will stimulate additional plant and algal growth. Therefore, it is not critical to conduct nitrogen sampling. # > Table 8: Total Phosphorus Table 8 in Appendix B presents the current year and historical total phosphorus data for in-lake and tributary stations. Phosphorus is the nutrient that limits the algae's ability to grow and reproduce. Please refer to the "Chemical Monitoring Parameters" section of this report for a more detailed explanation. The phosphorus concentration in the **tributaries** was **relatively low** this year, which is good news. However, we recommend that your monitoring group sample the major tributaries to the pond during snow-melt and periodically during rainstorms to determine if the phosphorus concentration is **elevated** in the tributaries during these times. Typically, the majority of nutrient loading to a pond occurs in the spring during snow-melt and during intense rainstorms that cause soil erosion and surface runoff and within the watershed. For a detailed explanation on how to conduct rain event sampling and stream surveys, please refer to the 2002 VLAP Annual Report special topic article, which is posted on the VLAP website at http://www.des.nh.gov/organization/divisions/water/wmb/vlap/categories/publications.htm, or contact the VLAP Coordinator. Table 9 and Table 10: Dissolved Oxygen and Temperature Data Table 9 in Appendix B shows the dissolved oxygen/temperature profile(s) collected during 2008. Table 10 in Appendix B shows the historical and current year dissolved oxygen concentration in the hypolimnion (lower layer). The presence of sufficient amounts of dissolved oxygen in the water column is vital to fish and amphibians and bottom-dwelling organisms. Please refer to the "Chemical Monitoring Parameters" section of this report for a more detailed explanation. The dissolved oxygen concentration was much lower in the hypolimnion (lower layer) than in the epilimnion (upper layer) at the deep spot on the **July** sampling event. As stratified ponds age, and as the summer progresses, oxygen typically becomes **depleted** in the hypolimnion by the process of decomposition. Specifically, the reduction of hypolimnetic oxygen is primarily a result of biological organisms using oxygen to break down organic matter, both in the water column and particularly at the bottom of the lake or pond where the water meets the sediment. When hypolimnetic oxygen concentration is depleted to less than 1 mg/L, **as it was on the annual biologist visit this year and on many previous annual visits,** the phosphorus that is normally bound up in the sediment may be re-released into the water column, a process referred to as **internal phosphorus loading**. **Low** hypolimnetic oxygen levels are a sign of the pond's **aging** and **declining** health. This year the DES biologist collected the dissolved oxygen profile in **July**. We recommend that the annual biologist visit for the **2009** sampling year be scheduled during **June** so that we can determine if oxygen is depleted in the hypolimnion **earlier** in the sampling year. # > Table 11: Turbidity Table 11 in Appendix B lists the current year and historical data for in-lake and tributary turbidity. Turbidity in the water is caused by suspended matter, such as clay, silt, and algae. Water clarity is strongly influenced by turbidity. Please refer to the "Other Monitoring Parameters" section of this report for a more detailed explanation. The tributary and deep spot turbidity was *relatively low* this year, which is good news. However, we recommend that your group sample the pond and any surface water runoff areas during significant rain events to determine if stormwater runoff contributes turbidity and phosphorus to the pond. For a detailed explanation on how to conduct rain event sampling, please refer to the 2002 VLAP Annual Report special topic article, which is posted on the VLAP website at http://www.des.nh.gov/organization/divisions/water/wmb/vlap/categories/publications.htm, or contact the VLAP Coordinator. # > Table 12: Bacteria (E.coli) Table 12 in Appendix B lists the current year and historical data for bacteria (*E.coli*) testing. *E. coli* is a normal bacterium found in the large intestine of humans and other warm-blooded animals. *E.coli* is used as an indicator organism because it is easily cultured and its presence in the water, in defined amounts, indicates that sewage **may** be present. If sewage is present in the water, potentially harmful disease-causing organisms **may** also be present. Two in-lake locations were sampled for *E.coli* on the **7/8/2008** DES Lake Survey Program sampling event. The results were **60** and **< 10**, which are both *less than* the state standard of 406 counts per 100 mL for recreational surface waters that are not designated public beaches and 88 counts per 100 mL for surface waters that are designated public beaches. If residents are concerned about sources of bacteria, such as failing septic systems, animal waste, or waterfowl waste, it is best to conduct *E. coli* testing when the water table is high, when beach use is heavy, or immediately after rain events. The *E. coli* concentration was **very low** at each station sampled on the **7/2/2008 and 8/19/2008** sampling events. Specifically, each result was **18 counts or less**, which is *much less than* the state standard of 406 counts per 100 mL for recreational surface waters that are not designated public beaches and 88 counts per 100 mL for surface waters that are designated public beaches. ## > Table 13: Chloride Table 13 in Appendix B lists the current year and the historical data for chloride sampling. The chloride ion (Cl-) is found naturally in some surfacewaters and groundwaters and in high concentrations in seawater. Research has shown that elevated chloride levels can be toxic to freshwater aquatic life. In order to protect freshwater aquatic life in New Hampshire, the state has adopted **acute and chronic** chloride criteria of **860 and 230 mg/L** respectively. The chloride content in New Hampshire lakes is naturally low, generally less than 2 mg/L in surface waters located in remote areas away from habitation. Higher values are generally associated with salted highways and, to a lesser extent, with septic inputs. Please refer to the "Chemical Monitoring Parameters" section of this report for a more detailed explanation. The **epilimnion** was sampled for chloride during the **7/8/2008** sampling event. The result was **16 mg/L**, which is **much less than** the state acute and chronic chloride criteria. However, this concentration is **greater than** what we would normally expect to measure in undisturbed New Hampshire surface waters. We recommend that your monitoring group continue to conduct chloride sampling in the epilimnion at the deep spot, particularly in the spring during snow-melt and rain events during the summer. This will establish a baseline of data that will assist your monitoring group and DES to determine lake quality trends in the future. Please note that chloride analyses can be run free of charge at the DES Limnology Center. Please contact the VLAP Coordinator if you are interested in chloride monitoring. In addition, it is best to conduct chloride sampling in the spring as the snow is melting and during rain events. # Table 14: Current Year Biological and Chemical Raw Data Table 14 in Appendix B lists the most current sampling year results. Since the maximum, minimum, and annual mean values for each parameter are not shown on this table, this table displays the current year "raw," meaning unprocessed, data. The results are sorted by station, depth, and then parameter. # > Table 15: Station Table As of the spring of 2004, all historical and current year VLAP data are included in the DES Environmental Monitoring Database (EMD). To facilitate the transfer of VLAP data into the EMD, a new station identification system had to be developed. While volunteer monitoring groups can still use the sampling station names that they have used in the past and are most familiar with, an EMD station name also exists for each VLAP sampling location. Table 15 in Appendix B identifies what EMD station name corresponds to the station names you have used in the past and will continue to use in the future. # **DATA QUALITY ASSURANCE AND CONTROL** # **Annual Assessment Audit:** During the annual visit to your pond, the biologist conducted a sampling procedures assessment audit for your monitoring group. Specifically, the biologist observed the performance of your monitoring group and completed an assessment audit sheet to document the volunteer monitors' ability to follow the proper field sampling procedures, as outlined in the VLAP Monitor's Field Manual. This assessment is used to identify any aspects of sample collection in which volunteer monitors failed to follow proper procedures, and also provides an opportunity for the biologist to retrain the volunteer monitors as necessary. This will ultimately ensure samples that the volunteer monitors collect are truly representative of actual lake and tributary conditions. Overall, your monitoring group performed *very well* while collecting samples on the annual biologist visit this year! Specifically, the members of your monitoring group followed the majority of the proper field sampling procedures. However, the biologist did identify a few aspects regarding sample collection that the volunteer monitors could improve upon, as follows: Anchoring at deep spot: Please remember to use an anchor with sufficient weight and a sufficient amount of rope to prevent the boat from drifting while sampling at the deep spot. It is difficult for the biologist to collect an accurate and representative dissolved oxygen/temperature profile when the boat is drifting. In addition, it is difficult to view the Secchi disk and collect samples from the proper depths when the boat is drifting. Depending on the depth of the pond and the wind conditions, it may be necessary to use two anchors! # Sample Receipt Checklist: Each time your monitoring group dropped off samples at the laboratory this summer, the laboratory staff completed a sample receipt checklist to assess and document if your group followed proper sampling techniques when collecting the samples. The purpose of the sample receipt checklist is to minimize, and hopefully eliminate, improper sampling techniques. Overall, the sample receipt checklist showed that your monitoring group did a **very good** job when collecting samples this year! Specifically, the members of your monitoring group followed the majority of the proper field sampling procedures when collecting and submitting samples to the laboratory. However, the laboratory did identify a few aspects of sample collection that your group could improve upon, as follows: - > Sample labeling: Please label your samples with a waterproof pen preferably by using a black permanent before sampling. Check to make sure that the ink does not wash off the bottle when exposed to water. Please label sample bottles with the Lake name, station name, station depth, date and time samples were collected. If your association has made its own sample bottle labels, please fold over one corner of each label before placing it on a sample bottle so that the label will not become permanently attached to the bottle. In addition, please make sure that the labels will stick to the bottles when they are wet. - > Secchi disk readings: When measuring the transparency at the deep spot, please remember to take at least two Secchi disk readings and record these on the field data sheet. Since the depth to which the Secchi disk can be seen in the water can vary depending on how windy or sunny it is, and also on the eyesight of the volunteer monitor, it is best to have at least two people take readings. In addition, please make sure that the Secchi disk readings without the use of a viewscope are taken on the shady, non-windy side of the boat, and that Secchi disk readings with the use of a viewscope are taken on the sunny side of the boat, between the hours of 10 am and 2 pm. ## **USEFUL RESOURCES** Best Management Practices to Control Nonpoint Source Pollution: A Guide for Citizens and Town Officials, DES Booklet WD-03-42, (603) 271-2975 or www.des.nh.gov/organization/commissioner/pip/publications/wd/docu ments/wd-03-42.pdf. Cyanobacteria in New Hampshire Waters Potential Dangers of Blue-Green Algae Blooms, DES fact sheet WMB-10, (603) 271-2975 or www.des.nh.gov/organization/commissioner/pip/factsheets/wmb/docu ments/wmb-10.pdf. Impacts of Development Upon Stormwater Runoff, DES fact sheet WDWQE-7, (603) 271-2975 or www.des.nh.gov/organization/commissioner/pip/factsheets/aot/documents/wqe-7.pdf. Lake Protection Tips: Some Do's and Don'ts for Maintaining Healthy Lakes, DES fact sheet WD-BB-9, (603) 271-2975 or www.des.nh.gov/organization/commissioner/pip/factsheets/bb/docume nts/bb-9.pdf. Proper Lawn Care In the Protected Shoreland, The Comprehensive Shoreland Protection Act, DES fact sheet WD-SP-2, (603) 271-2975 or www.des.nh.gov/organization/commissioner/pip/factsheets/sp/documents/sp-2.pdf. Road Salt and Water Quality, DES fact sheet WD-WMB-4, (603) 271-2975 or www.des.nh.gov/organization/commissioner/pip/factsheets/wmb/documents/wmb-4.pdf. Shorelands Under the Jurisdiction of the Comprehensive Shoreland Protection Act, DES fact sheet SP-4, (603) 271-2975 or www.des.nh.gov/organization/commissioner/pip/factsheets/sp/documents/sp-4.pdf. Through the Looking Glass: A Field Guide to Aquatic Plants, North American Lake Management Society, 1988, (608) 233-2836 or www.nalms.org.